Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 116
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Genome Res ; 34(3): 454-468, 2024 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-38627094

RESUMO

Reference-free genome phasing is vital for understanding allele inheritance and the impact of single-molecule DNA variation on phenotypes. To achieve thorough phasing across homozygous or repetitive regions of the genome, long-read sequencing technologies are often used to perform phased de novo assembly. As a step toward reducing the cost and complexity of this type of analysis, we describe new methods for accurately phasing Oxford Nanopore Technologies (ONT) sequence data with the Shasta genome assembler and a modular tool for extending phasing to the chromosome scale called GFAse. We test using new variants of ONT PromethION sequencing, including those using proximity ligation, and show that newer, higher accuracy ONT reads substantially improve assembly quality.


Assuntos
Nanoporos , Humanos , Análise de Sequência de DNA/métodos , Sequenciamento por Nanoporos/métodos , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Software , Genômica/métodos
2.
Nature ; 2024 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-38570684

RESUMO

Human centromeres have been traditionally very difficult to sequence and assemble owing to their repetitive nature and large size1. As a result, patterns of human centromeric variation and models for their evolution and function remain incomplete, despite centromeres being among the most rapidly mutating regions2,3. Here, using long-read sequencing, we completely sequenced and assembled all centromeres from a second human genome and compared it to the finished reference genome4,5. We find that the two sets of centromeres show at least a 4.1-fold increase in single-nucleotide variation when compared with their unique flanks and vary up to 3-fold in size. Moreover, we find that 45.8% of centromeric sequence cannot be reliably aligned using standard methods owing to the emergence of new α-satellite higher-order repeats (HORs). DNA methylation and CENP-A chromatin immunoprecipitation experiments show that 26% of the centromeres differ in their kinetochore position by >500 kb. To understand evolutionary change, we selected six chromosomes and sequenced and assembled 31 orthologous centromeres from the common chimpanzee, orangutan and macaque genomes. Comparative analyses reveal a nearly complete turnover of α-satellite HORs, with characteristic idiosyncratic changes in α-satellite HORs for each species. Phylogenetic reconstruction of human haplotypes supports limited to no recombination between the short (p) and long (q) arms across centromeres and reveals that novel α-satellite HORs share a monophyletic origin, providing a strategy to estimate the rate of saltatory amplification and mutation of human centromeric DNA.

3.
Genome Res ; 34(3): 498-513, 2024 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-38508693

RESUMO

Hydractinia is a colonial marine hydroid that shows remarkable biological properties, including the capacity to regenerate its entire body throughout its lifetime, a process made possible by its adult migratory stem cells, known as i-cells. Here, we provide an in-depth characterization of the genomic structure and gene content of two Hydractinia species, Hydractinia symbiolongicarpus and Hydractinia echinata, placing them in a comparative evolutionary framework with other cnidarian genomes. We also generated and annotated a single-cell transcriptomic atlas for adult male H. symbiolongicarpus and identified cell-type markers for all major cell types, including key i-cell markers. Orthology analyses based on the markers revealed that Hydractinia's i-cells are highly enriched in genes that are widely shared amongst animals, a striking finding given that Hydractinia has a higher proportion of phylum-specific genes than any of the other 41 animals in our orthology analysis. These results indicate that Hydractinia's stem cells and early progenitor cells may use a toolkit shared with all animals, making it a promising model organism for future exploration of stem cell biology and regenerative medicine. The genomic and transcriptomic resources for Hydractinia presented here will enable further studies of their regenerative capacity, colonial morphology, and ability to distinguish self from nonself.


Assuntos
Genoma , Hidrozoários , Animais , Hidrozoários/genética , Evolução Molecular , Transcriptoma , Células-Tronco/metabolismo , Masculino , Filogenia , Análise de Célula Única/métodos
4.
bioRxiv ; 2024 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-38529488

RESUMO

The combination of ultra-long Oxford Nanopore (ONT) sequencing reads with long, accurate PacBio HiFi reads has enabled the completion of a human genome and spurred similar efforts to complete the genomes of many other species. However, this approach for complete, "telomere-to-telomere" genome assembly relies on multiple sequencing platforms, limiting its accessibility. ONT "Duplex" sequencing reads, where both strands of the DNA are read to improve quality, promise high per-base accuracy. To evaluate this new data type, we generated ONT Duplex data for three widely-studied genomes: human HG002, Solanum lycopersicum Heinz 1706 (tomato), and Zea mays B73 (maize). For the diploid, heterozygous HG002 genome, we also used "Pore-C" chromatin contact mapping to completely phase the haplotypes. We found the accuracy of Duplex data to be similar to HiFi sequencing, but with read lengths tens of kilobases longer, and the Pore-C data to be compatible with existing diploid assembly algorithms. This combination of read length and accuracy enables the construction of a high-quality initial assembly, which can then be further resolved using the ultra-long reads, and finally phased into chromosome-scale haplotypes with Pore-C. The resulting assemblies have a base accuracy exceeding 99.999% (Q50) and near-perfect continuity, with most chromosomes assembled as single contigs. We conclude that ONT sequencing is a viable alternative to HiFi sequencing for de novo genome assembly, and has the potential to provide a single-instrument solution for the reconstruction of complete genomes.

5.
bioRxiv ; 2024 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-38529499

RESUMO

Haplotype information is crucial for biomedical and population genetics research. However, current strategies to produce de-novo haplotype-resolved assemblies often require either difficult-to-acquire parental data or an intermediate haplotype-collapsed assembly. Here, we present Graphasing, a workflow which synthesizes the global phase signal of Strand-seq with assembly graph topology to produce chromosome-scale de-novo haplotypes for diploid genomes. Graphasing readily integrates with any assembly workflow that both outputs an assembly graph and has a haplotype assembly mode. Graphasing performs comparably to trio-phasing in contiguity, phasing accuracy, and assembly quality, outperforms Hi-C in phasing accuracy, and generates human assemblies with over 18 chromosome-spanning haplotypes.

6.
Nat Methods ; 21(1): 41-49, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38036856

RESUMO

Complete, telomere-to-telomere (T2T) genome assemblies promise improved analyses and the discovery of new variants, but many essential genomic resources remain associated with older reference genomes. Thus, there is a need to translate genomic features and read alignments between references. Here we describe a method called levioSAM2 that performs fast and accurate lift-over between assemblies using a whole-genome map. In addition to enabling the use of several references, we demonstrate that aligning reads to a high-quality reference (for example, T2T-CHM13) and lifting to an older reference (for example, Genome reference Consortium (GRC)h38) improves the accuracy of the resulting variant calls on the old reference. By leveraging the quality improvements of T2T-CHM13, levioSAM2 reduces small and structural variant calling errors compared with GRC-based mapping using real short- and long-read datasets. Performance is especially improved for a set of complex medically relevant genes, where the GRC references are lower quality.


Assuntos
Genoma , Genômica , Análise de Sequência de DNA/métodos , Genômica/métodos , Mapeamento Cromossômico , Sequenciamento de Nucleotídeos em Larga Escala
7.
Genes (Basel) ; 14(12)2023 Dec 14.
Artigo em Inglês | MEDLINE | ID: mdl-38137031

RESUMO

BACKGROUND: Insects are a sustainable source of protein for human food and animal feed. We present a genome assembly, CRISPR gene editing, and life stage-specific transcriptomes for the yellow mealworm, Tenebrio molitor, one of the most intensively farmed insects worldwide. METHODS: Long and short reads and long-range data were obtained from a T. molitor male pupa. Sequencing transcripts from 12 T. molitor life stages resulted in 279 million reads for gene prediction and genetic engineering. A unique plasmid delivery system containing guide RNAs targeting the eye color gene vermilion flanking the muscle actin gene promoter and EGFP marker was used in CRISPR/Cas9 transformation. RESULTS: The assembly is approximately 53% of the genome size of 756.8 ± 9.6 Mb, measured using flow cytometry. Assembly was complicated by a satellitome of at least 11 highly conserved satDNAs occupying 28% of the genome. The injection of the plasmid into embryos resulted in knock-out of Tm vermilion and knock-in of EGFP. CONCLUSIONS: The genome of T. molitor is longer than current assemblies (including ours) due to a substantial amount (26.5%) of only one highly abundant satellite DNA sequence. Genetic sequences and transformation tools for an insect important to the food and feed industries will promote the sustainable utilization of mealworms and other farmed insects.


Assuntos
Tenebrio , Animais , Masculino , Humanos , Tenebrio/genética , Tenebrio/metabolismo , RNA Guia de Sistemas CRISPR-Cas , Cor de Olho , Ração Animal/análise , Larva/metabolismo
8.
bioRxiv ; 2023 Aug 27.
Artigo em Inglês | MEDLINE | ID: mdl-37786714

RESUMO

Hydractinia is a colonial marine hydroid that exhibits remarkable biological properties, including the capacity to regenerate its entire body throughout its lifetime, a process made possible by its adult migratory stem cells, known as i-cells. Here, we provide an in-depth characterization of the genomic structure and gene content of two Hydractinia species, H. symbiolongicarpus and H. echinata, placing them in a comparative evolutionary framework with other cnidarian genomes. We also generated and annotated a single-cell transcriptomic atlas for adult male H. symbiolongicarpus and identified cell type markers for all major cell types, including key i-cell markers. Orthology analyses based on the markers revealed that Hydractinia's i-cells are highly enriched in genes that are widely shared amongst animals, a striking finding given that Hydractinia has a higher proportion of phylum-specific genes than any of the other 41 animals in our orthology analysis. These results indicate that Hydractinia's stem cells and early progenitor cells may use a toolkit shared with all animals, making it a promising model organism for future exploration of stem cell biology and regenerative medicine. The genomic and transcriptomic resources for Hydractinia presented here will enable further studies of their regenerative capacity, colonial morphology, and ability to distinguish self from non-self.

9.
bioRxiv ; 2023 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-37609174

RESUMO

Over the decades, a small number of model species, each representative of a larger taxa, have dominated the field of biological research. Amongst fishes, zebrafish (Danio rerio) has gained popularity over most other species and while their value as a model is well documented, their usefulness is limited in certain fields of research such as behavior. By embracing other, less conventional experimental organisms, opportunities arise to gain broader insights into evolution and development, as well as studying behavioral aspects not available in current popular model systems. The anabantoid paradise fish (Macropodus opercularis), an "air-breather" species from Southeast Asia, has a highly complex behavioral repertoire and has been the subject of many ethological investigations, but lacks genomic resources. Here we report the reference genome assembly of Macropodus opercularis using long-read sequences at 150-fold coverage. The final assembly consisted of ≈483 Mb on 152 contigs. Within the assembled genome we identified and annotated 20,157 protein coding genes and assigned ≈90% of them to orthogroups. Completeness analysis showed that 98.5% of the Actinopterygii core gene set (ODB10) was present as a complete ortholog in our reference genome with a further 1.2 % being present in a fragmented form. Additionally, we cloned multiple genes important during early development and using newly developed in situ hybridization protocols, we showed that they have conserved expression patterns.

10.
Nature ; 621(7978): 344-354, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37612512

RESUMO

The human Y chromosome has been notoriously difficult to sequence and assemble because of its complex repeat structure that includes long palindromes, tandem repeats and segmental duplications1-3. As a result, more than half of the Y chromosome is missing from the GRCh38 reference sequence and it remains the last human chromosome to be finished4,5. Here, the Telomere-to-Telomere (T2T) consortium presents the complete 62,460,029-base-pair sequence of a human Y chromosome from the HG002 genome (T2T-Y) that corrects multiple errors in GRCh38-Y and adds over 30 million base pairs of sequence to the reference, showing the complete ampliconic structures of gene families TSPY, DAZ and RBMY; 41 additional protein-coding genes, mostly from the TSPY family; and an alternating pattern of human satellite 1 and 3 blocks in the heterochromatic Yq12 region. We have combined T2T-Y with a previous assembly of the CHM13 genome4 and mapped available population variation, clinical variants and functional genomics data to produce a complete and comprehensive reference sequence for all 24 human chromosomes.


Assuntos
Cromossomos Humanos Y , Genômica , Análise de Sequência de DNA , Humanos , Sequência de Bases , Cromossomos Humanos Y/genética , DNA Satélite/genética , Variação Genética/genética , Genética Populacional , Genômica/métodos , Genômica/normas , Heterocromatina/genética , Família Multigênica/genética , Padrões de Referência , Duplicações Segmentares Genômicas/genética , Análise de Sequência de DNA/normas , Sequências de Repetição em Tandem/genética , Telômero/genética
11.
bioRxiv ; 2023 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-37398417

RESUMO

We completely sequenced and assembled all centromeres from a second human genome and used two reference sets to benchmark genetic, epigenetic, and evolutionary variation within centromeres from a diversity panel of humans and apes. We find that centromere single-nucleotide variation can increase by up to 4.1-fold relative to other genomic regions, with the caveat that up to 45.8% of centromeric sequence, on average, cannot be reliably aligned with current methods due to the emergence of new α-satellite higher-order repeat (HOR) structures and two to threefold differences in the length of the centromeres. The extent to which this occurs differs depending on the chromosome and haplotype. Comparing the two sets of complete human centromeres, we find that eight harbor distinctly different α-satellite HOR array structures and four contain novel α-satellite HOR variants in high abundance. DNA methylation and CENP-A chromatin immunoprecipitation experiments show that 26% of the centromeres differ in their kinetochore position by at least 500 kbp-a property not readily associated with novel α-satellite HORs. To understand evolutionary change, we selected six chromosomes and sequenced and assembled 31 orthologous centromeres from the common chimpanzee, orangutan, and macaque genomes. Comparative analyses reveal nearly complete turnover of α-satellite HORs, but with idiosyncratic changes in structure characteristic to each species. Phylogenetic reconstruction of human haplotypes supports limited to no recombination between the p- and q-arms of human chromosomes and reveals that novel α-satellite HORs share a monophyletic origin, providing a strategy to estimate the rate of saltatory amplification and mutation of human centromeric DNA.

12.
ArXiv ; 2023 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-37332563

RESUMO

Despite recent advances in the length and the accuracy of long-read data, building haplotype-resolved genome assemblies from telomere to telomere still requires considerable computational resources. In this study, we present an efficient de novo assembly algorithm that combines multiple sequencing technologies to scale up population-wide telomere-to-telomere assemblies. By utilizing twenty-two human and two plant genomes, we demonstrate that our algorithm is around an order of magnitude cheaper than existing methods, while producing better diploid and haploid assemblies. Notably, our algorithm is the only feasible solution to the haplotype-resolved assembly of polyploid genomes.

13.
Nature ; 617(7960): 335-343, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-37165241

RESUMO

The short arms of the human acrocentric chromosomes 13, 14, 15, 21 and 22 (SAACs) share large homologous regions, including ribosomal DNA repeats and extended segmental duplications1,2. Although the resolution of these regions in the first complete assembly of a human genome-the Telomere-to-Telomere Consortium's CHM13 assembly (T2T-CHM13)-provided a model of their homology3, it remained unclear whether these patterns were ancestral or maintained by ongoing recombination exchange. Here we show that acrocentric chromosomes contain pseudo-homologous regions (PHRs) indicative of recombination between non-homologous sequences. Utilizing an all-to-all comparison of the human pangenome from the Human Pangenome Reference Consortium4 (HPRC), we find that contigs from all of the SAACs form a community. A variation graph5 constructed from centromere-spanning acrocentric contigs indicates the presence of regions in which most contigs appear nearly identical between heterologous acrocentric chromosomes in T2T-CHM13. Except on chromosome 15, we observe faster decay of linkage disequilibrium in the pseudo-homologous regions than in the corresponding short and long arms, indicating higher rates of recombination6,7. The pseudo-homologous regions include sequences that have previously been shown to lie at the breakpoint of Robertsonian translocations8, and their arrangement is compatible with crossover in inverted duplications on chromosomes 13, 14 and 21. The ubiquity of signals of recombination between heterologous acrocentric chromosomes seen in the HPRC draft pangenome suggests that these shared sequences form the basis for recurrent Robertsonian translocations, providing sequence and population-based confirmation of hypotheses first developed from cytogenetic studies 50 years ago9.


Assuntos
Centrômero , Cromossomos Humanos , Recombinação Genética , Humanos , Centrômero/genética , Cromossomos Humanos/genética , DNA Ribossômico/genética , Recombinação Genética/genética , Translocação Genética/genética , Citogenética , Telômero/genética
14.
Biomolecules ; 13(4)2023 03 24.
Artigo em Inglês | MEDLINE | ID: mdl-37189337

RESUMO

Background: The house cricket, Acheta domesticus, is one of the most farmed insects worldwide and the foundation of an emerging industry using insects as a sustainable food source. Edible insects present a promising alternative for protein production amid a plethora of reports on climate change and biodiversity loss largely driven by agriculture. As with other crops, genetic resources are needed to improve crickets for food and other applications. Methods: We present the first high quality annotated genome assembly of A. domesticus from long read data and scaffolded to chromosome level, providing information needed for genetic manipulation. Results: Gene groups related to immunity were annotated and will be useful for improving value to insect farmers. Metagenome scaffolds in the A. domesticus assembly, including Invertebrate Iridescent Virus 6 (IIV6), were submitted as host-associated sequences. We demonstrate both CRISPR/Cas9-mediated knock-in and knock-out of A. domesticus and discuss implications for the food, pharmaceutical, and other industries. RNAi was demonstrated to disrupt the function of the vermilion eye-color gene producing a useful white-eye biomarker phenotype. Conclusions: We are utilizing these data to develop technologies for downstream commercial applications, including more nutritious and disease-resistant crickets, as well as lines producing valuable bioproducts, such as vaccines and antibiotics.


Assuntos
Gryllidae , Animais , Gryllidae/genética , Gryllidae/metabolismo , Agricultura , Produtos Agrícolas , Alérgenos/metabolismo , Engenharia Genética
15.
BMC Biol ; 21(1): 67, 2023 04 03.
Artigo em Inglês | MEDLINE | ID: mdl-37013528

RESUMO

BACKGROUND: Channel catfish and blue catfish are the most important aquacultured species in the USA. The species do not readily intermate naturally but F1 hybrids can be produced through artificial spawning. F1 hybrids produced by mating channel catfish female with blue catfish male exhibit heterosis and provide an ideal system to study reproductive isolation and hybrid vigor. The purpose of the study was to generate high-quality chromosome level reference genome sequences and to determine their genomic similarities and differences. RESULTS: We present high-quality reference genome sequences for both channel catfish and blue catfish, containing only 67 and 139 total gaps, respectively. We also report three pericentric chromosome inversions between the two genomes, as evidenced by long reads across the inversion junctions from distinct individuals, genetic linkage mapping, and PCR amplicons across the inversion junctions. Recombination rates within the inversional segments, detected as double crossovers, are extremely low among backcross progenies (progenies of channel catfish female × F1 hybrid male), suggesting that the pericentric inversions interrupt postzygotic recombination or survival of recombinants. Identification of channel catfish- and blue catfish-specific genes, along with expansions of immunoglobulin genes and centromeric Xba elements, provides insights into genomic hallmarks of these species. CONCLUSIONS: We generated high-quality reference genome sequences for both blue catfish and channel catfish and identified major chromosomal inversions on chromosomes 6, 11, and 24. These perimetric inversions were validated by additional sequencing analysis, genetic linkage mapping, and PCR analysis across the inversion junctions. The reference genome sequences, as well as the contrasted chromosomal architecture should provide guidance for the interspecific breeding programs.


Assuntos
Ictaluridae , Humanos , Animais , Masculino , Feminino , Ictaluridae/genética , Inversão Cromossômica , Ligação Genética , Genoma , Mapeamento Cromossômico
16.
bioRxiv ; 2023 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-36865218

RESUMO

As a step towards simplifying and reducing the cost of haplotype resolved de novo assembly, we describe new methods for accurately phasing nanopore data with the Shasta genome assembler and a modular tool for extending phasing to the chromosome scale called GFAse. We test using new variants of Oxford Nanopore Technologies' (ONT) PromethION sequencing, including those using proximity ligation and show that newer, higher accuracy ONT reads substantially improve assembly quality.

17.
Nat Biotechnol ; 41(10): 1474-1482, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-36797493

RESUMO

The Telomere-to-Telomere consortium recently assembled the first truly complete sequence of a human genome. To resolve the most complex repeats, this project relied on manual integration of ultra-long Oxford Nanopore sequencing reads with a high-resolution assembly graph built from long, accurate PacBio high-fidelity reads. We have improved and automated this strategy in Verkko, an iterative, graph-based pipeline for assembling complete, diploid genomes. Verkko begins with a multiplex de Bruijn graph built from long, accurate reads and progressively simplifies this graph by integrating ultra-long reads and haplotype-specific markers. The result is a phased, diploid assembly of both haplotypes, with many chromosomes automatically assembled from telomere to telomere. Running Verkko on the HG002 human genome resulted in 20 of 46 diploid chromosomes assembled without gaps at 99.9997% accuracy. The complete assembly of diploid genomes is a critical step towards the construction of comprehensive pangenome databases and chromosome-scale comparative genomics.


Assuntos
Diploide , Genômica , Humanos , Análise de Sequência de DNA/métodos , Genômica/métodos , Genoma Humano/genética , Telômero/genética , Sequenciamento de Nucleotídeos em Larga Escala/métodos
18.
DNA Res ; 30(1)2023 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-36208288

RESUMO

A contiguous assembly of the inbred 'EL10' sugar beet (Beta vulgaris ssp. vulgaris) genome was constructed using PacBio long-read sequencing, BioNano optical mapping, Hi-C scaffolding, and Illumina short-read error correction. The EL10.1 assembly was 540 Mb, of which 96.2% was contained in nine chromosome-sized pseudomolecules with lengths from 52 to 65 Mb, and 31 contigs with a median size of 282 kb that remained unassembled. Gene annotation incorporating RNA-seq data and curated sequences via the MAKER annotation pipeline generated 24,255 gene models. Results indicated that the EL10.1 genome assembly is a contiguous genome assembly highly congruent with the published sugar beet reference genome. Gross duplicate gene analyses of EL10.1 revealed little large-scale intra-genome duplication. Reduced gene copy number for well-annotated gene families relative to other core eudicots was observed, especially for transcription factors. Variation in genome size in B. vulgaris was investigated by flow cytometry among 50 individuals producing estimates from 633 to 875 Mb/1C. Read-depth mapping with short-read whole-genome sequences from other sugar beet germplasm suggested that relatively few regions of the sugar beet genome appeared associated with high-copy number variation.


Assuntos
Beta vulgaris , Humanos , Beta vulgaris/genética , Variações do Número de Cópias de DNA , Cromossomos , Anotação de Sequência Molecular , Açúcares
19.
Nature ; 611(7936): 519-531, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36261518

RESUMO

The current human reference genome, GRCh38, represents over 20 years of effort to generate a high-quality assembly, which has benefitted society1,2. However, it still has many gaps and errors, and does not represent a biological genome as it is a blend of multiple individuals3,4. Recently, a high-quality telomere-to-telomere reference, CHM13, was generated with the latest long-read technologies, but it was derived from a hydatidiform mole cell line with a nearly homozygous genome5. To address these limitations, the Human Pangenome Reference Consortium formed with the goal of creating high-quality, cost-effective, diploid genome assemblies for a pangenome reference that represents human genetic diversity6. Here, in our first scientific report, we determined which combination of current genome sequencing and assembly approaches yield the most complete and accurate diploid genome assembly with minimal manual curation. Approaches that used highly accurate long reads and parent-child data with graph-based haplotype phasing during assembly outperformed those that did not. Developing a combination of the top-performing methods, we generated our first high-quality diploid reference assembly, containing only approximately four gaps per chromosome on average, with most chromosomes within ±1% of the length of CHM13. Nearly 48% of protein-coding genes have non-synonymous amino acid changes between haplotypes, and centromeric regions showed the highest diversity. Our findings serve as a foundation for assembling near-complete diploid human genomes at scale for a pangenome reference to capture global genetic variation from single nucleotides to structural rearrangements.


Assuntos
Mapeamento Cromossômico , Diploide , Genoma Humano , Genômica , Humanos , Mapeamento Cromossômico/normas , Genoma Humano/genética , Haplótipos/genética , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Sequenciamento de Nucleotídeos em Larga Escala/normas , Análise de Sequência de DNA/métodos , Análise de Sequência de DNA/normas , Padrões de Referência , Genômica/métodos , Genômica/normas , Cromossomos Humanos/genética , Variação Genética/genética
20.
Proc Natl Acad Sci U S A ; 119(40): e2207374119, 2022 10 04.
Artigo em Inglês | MEDLINE | ID: mdl-36161920

RESUMO

Most colonial marine invertebrates are capable of allorecognition, the ability to distinguish between themselves and conspecifics. One long-standing question is whether invertebrate allorecognition genes are homologous to vertebrate histocompatibility genes. In the cnidarian Hydractinia symbiolongicarpus, allorecognition is controlled by at least two genes, Allorecognition 1 (Alr1) and Allorecognition 2 (Alr2), which encode highly polymorphic cell-surface proteins that serve as markers of self. Here, we show that Alr1 and Alr2 are part of a family of 41 Alr genes, all of which reside in a single genomic interval called the Allorecognition Complex (ARC). Using sensitive homology searches and highly accurate structural predictions, we demonstrate that the Alr proteins are members of the immunoglobulin superfamily (IgSF) with V-set and I-set Ig domains unlike any previously identified in animals. Specifically, their primary amino acid sequences lack many of the motifs considered diagnostic for V-set and I-set domains, yet they adopt secondary and tertiary structures nearly identical to canonical Ig domains. Thus, the V-set domain, which played a central role in the evolution of vertebrate adaptive immunity, was present in the last common ancestor of cnidarians and bilaterians. Unexpectedly, several Alr proteins also have immunoreceptor tyrosine-based activation motifs and immunoreceptor tyrosine-based inhibitory motifs in their cytoplasmic tails, suggesting they could participate in pathways homologous to those that regulate immunity in humans and flies. This work expands our definition of the IgSF with the addition of a family of unusual members, several of which play a role in invertebrate histocompatibility.


Assuntos
Hidrozoários , Imunoglobulinas , Complexo Principal de Histocompatibilidade , Animais , Hidrozoários/genética , Hidrozoários/imunologia , Imunoglobulinas/química , Imunoglobulinas/genética , Complexo Principal de Histocompatibilidade/genética , Proteínas de Membrana/química , Proteínas de Membrana/genética , Domínios Proteicos , Tirosina/química , Tirosina/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...